How to Use with AI Agents
This guide shows you how to use the Coding Context CLI with various AI agents and tools.
Basic Usage
Pipe the assembled context to any AI agent:
coding-context fix-bug | your-ai-agent
With Claude CLI
coding-context \
-p issue_key=BUG-123 \
-s languages=go \
/fix-bug | claude
With OpenAI API
coding-context code-review | openai api completions.create \
-m gpt-4 \
--stream
With LLM Tool
The llm tool supports many models:
# Using Claude
coding-context fix-bug | llm -m claude-3-5-sonnet-20241022
# Using Gemini
coding-context code-review | llm -m gemini-pro
# Using local models
coding-context implement-feature | llm -m llama2
Saving Context to File
Save the context for later use or inspection:
# Save to file
coding-context fix-bug > context.txt
# Review the context
cat context.txt
# Use with AI agent
cat context.txt | claude
Multi-Step Workflows
Use context in iterative workflows:
# Step 1: Initial analysis
coding-context -s resume=false fix-bug > context-initial.txt
cat context-initial.txt | ai-agent > analysis.txt
# Step 2: Implementation (skip rules with -r)
coding-context -r fix-bug > context-resume.txt
cat context-resume.txt analysis.txt | ai-agent > implementation.txt
With GitHub Copilot
If you’re using GitHub Copilot, the CLI can prepare context for custom instructions:
# Generate context
coding-context implement-feature > .github/copilot-context.md
# Copilot will read this file automatically
Write-Rules Mode
Write-rules mode (-w flag) separates rules from tasks, allowing AI agents to read rules from their standard configuration files while keeping task prompts clean.
Benefits
- Token Savings: Avoid including all rules in every prompt
- Agent Integration: Write rules to agent-specific config files
- Clean Prompts: Output only the task to stdout
Basic Usage
# Write rules to agent's config file, output task to stdout
coding-context -a copilot -w fix-bug | llm -m claude-3-5-sonnet
This will:
- Write all rules to
~/.github/agents/AGENTS.md - Output only the task prompt to stdout
- The AI agent reads rules from its config file
Agent-Specific Paths
Each agent has a designated configuration file:
# GitHub Copilot
coding-context -a copilot -w fix-bug # → ~/.github/agents/AGENTS.md
# Claude
coding-context -a claude -w fix-bug # → ~/.claude/CLAUDE.md
# Cursor
coding-context -a cursor -w fix-bug # → ~/.cursor/rules/AGENTS.md
# Gemini
coding-context -a gemini -w fix-bug # → ~/.gemini/GEMINI.md
Task-Specified Agent
Tasks can specify their preferred agent in frontmatter:
Task file (deploy.md):
---
agent: claude
---
# Deploy to Production
...
Usage:
# Task's agent field is used (writes to ~/.claude/CLAUDE.md)
coding-context -w deploy
# Task agent overrides -a flag
coding-context -a copilot -w deploy # Still uses claude
Workflow Example
# 1. Initial setup: Write rules once
coding-context -a copilot -w setup-project
# 2. Run multiple tasks without re-including rules
coding-context -a copilot -w fix-bug | llm
coding-context -a copilot -w code-review | llm
coding-context -a copilot -w refactor | llm
# 3. Update rules when needed
coding-context -a copilot -w -s languages=go update-rules
Environment Variables for Bootstrap Scripts
Pass environment variables to bootstrap scripts:
# Set environment variables
export JIRA_API_KEY="your-api-key"
export GITHUB_TOKEN="your-token"
export DATABASE_URL="your-db-url"
# Bootstrap scripts can access these
coding-context -s source=jira fix-bug | ai-agent
Token Count Monitoring
The CLI prints token estimates to stderr:
# See token count while piping to AI
coding-context fix-bug 2>&1 | tee >(grep -i token >&2) | ai-agent
# Or redirect stderr to file
coding-context fix-bug 2> tokens.log | ai-agent
Batch Processing
Process multiple tasks:
# Process multiple bug fixes
for issue in BUG-101 BUG-102 BUG-103; do
coding-context \
-p issue_key=$issue \
/fix-bug | ai-agent > "fix-$issue.txt"
done
Custom AI Agent Scripts
Create a wrapper script for your preferred setup:
#!/bin/bash
# ai-fix-bug.sh
ISSUE_KEY=$1
DESCRIPTION=$2
coding-context \
-s languages=go \
-s priority=high \
-p issue_key="$ISSUE_KEY" \
-p description="$DESCRIPTION" \
/fix-bug | llm -m claude-3-5-sonnet-20241022
Use with:
chmod +x ai-fix-bug.sh
./ai-fix-bug.sh BUG-123 "Application crashes on startup"
Handling Large Contexts
If your context exceeds token limits:
- Use selectors to reduce included rules:
coding-context -s priority=high fix-bug - Use resume mode to skip rules:
coding-context -r fix-bug - Split into multiple requests:
# First request: Planning coding-context -s stage=planning plan-feature | ai-agent # Second request: Implementation coding-context -s stage=implementation implement-feature | ai-agent
See Also
- CLI Reference - All command-line options
- GitHub Actions Integration - Automate with CI/CD
- Creating Tasks - Define what AI should do